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Dislocations at Elastic Discontinuities 591

While the general solution of the elastic stress field around a cavity in
an isotropic matrix subjected to high hydrostatic pressure has been
known since the classical work of Lamé in 1852, the extension of these
calculations to the case of an clastic inclusion taking into specific con-
sideration of the differences in compressibilities between matrix and
inclusion has not been reported. The calculations made heret follow the
continuum mechanics principles outlined by Sokolnikoff (1956) and assume
that the elastic properties of the matrix and the inclusion are isotropic,
the inclusion is spherical with a smooth surface and the stress fields of
different particles do not interact. Under these conditions, the maximum
shear stress, Tmax, Which develops at the inclusion-matrix interface is
given by the following relationships for the cases of a cavity, cavity with
internal pressure, a rigid inclusion and an elastic inclusion:

Cavity: Fanx =1P U ¢

Cavity with internal pressure
P; and external pressure zero:

(2a)

tmax=3P1 . o« . o ¢

Cavity with internal pressure
= Y P
P; and external pressure P: Tmax = (P = P1)

(20)

Rigid inclusion: Tmax =%.P R ¢ )

¢ — K
Elastic inclusion: Tmax = 37?[.3-11?‘—:—:1@ P .. &

where @ is the shear modulus of the matrix, P is the applied hydrostatic
pressure, Pi the internal pressure in the cavity and K and K; are the
bulk moduli of the matrix and the inclusion respectively. On substituting
values of K; appropriate to the limiting cases of the cavity and the rigid
inclusion (i.e. zero and infinity), eqn. (4) reduces to eqns. (1) and (3)
respectively. :

The complete set of equations for the radial, circumferential and
maximum shear stresses are given in table 1 for the cases of a cavity,
rigid inclusion and elastic inclusion (the corresponding strains and other
details of the calculations can be obtained from the authors). The table
also contains the value of Tmax for inclusions as calculated by Hahn and
Rosenfield (1966). Table 2 gives the values of the maximum shear stress
computed from the equation in table 1 as a function of the externally

+ An alternative approach to that used here for the elastic particle is the
generalized misfit-strain type of analysis developed by Eshelby (1957) subse-
quent to the work of Nabarro (1940). Asis discussed later, Lally and Partridge
(1966) have used an extension of Eshelby’s vproach in an attempt to compute
matrix shear stresses adjacent to a cavity containing gas at high pressure.

1 While their approximation is useful for ‘the case of the inclusion, it is
inapplicable to the limiting case of an internal cavity. See table 1.




